Will the IoT be the IPv6 killer app?

The Internet of Things (IoT) refers to the extension of today’s Internet beyond connectivity and interaction among traditional user-operated devices like PCs, tablets, phones and like types of devices into the realm of connectivity and interaction with non-user operated devices such as sensors, monitors and remotely controllable devices. Internet-enabling such “unmanned” devices allows these devices to autonomously report updates, status changes, events, or to perform actions commanded by users or other devices via the Internet. Examples of such “things” commonly in use today range from consumer goods to devices supporting business initiatives such as those in support of the following example applications.
  • Smart initiatives – providing a centralized view of yet unrealized volumes of data for more intelligence resource management and customer service such as:
    • Smart Grid – Dynamic matching of electricity, water, gas, etc. supply with demand, reducing resource waste and saving consumers on utility bills.
    • Smart Cars – Diagnostic and usage sensors within an automobile for performance reporting, troubleshooting and customer notification of worn components and recommended service check-ups as well as automated crash detection and reporting.
    • Smart Homes – Remote monitoring of premises, smart appliances, remote control of power, heating/cooling, lighting, entertainment, and access.
  • Municipal (smart cities) and industrial surveillance and monitoring – physical access control and monitoring, environmental monitoring for extreme conditions (e.g., natural disaster, fire, floods), structural monitoring and traffic monitoring.
  • Field applications – fleet management, dispatch, tracking and vehicle telematics.
  • Healthcare – fitness tracking, remote monitoring of patients’ vital signs, diagnostics and medication administration, “body area networks,” monitoring of storage environments, e.g., for plasma, organs.
  • Industrial – factory line monitoring, diagnostics, resource control, supply chain management, process monitoring and control leveraging improved accessibility that wireless provides.
  • Military – battlefield ad hoc networks with various soldier sensors reporting status updates to military command.
As implied by this list of applications, the key benefit of deploying such things is to extend the visibility, reach and control of a user or organization, providing more information for better insights and control with minimal incremental costs. These applications and others like them may require deployment of hundreds, thousands, even millions of sensor devices whose measurements and status information must be communicated to a centralized application server for processing, analytics and presentation. The confluence of advancements in wireless communications and networking, device miniaturization, battery technology, big data analytics, and application innovations has fueled seemingly limitless possibilities for Internet-connected things, and is constrained only by the imagination of device manufacturers and application developers.

IPv6 is likewise an enabler of IoT in one sense by its sheer address capacity in supporting millions of things (tens of billions by 2020 according to many analysts). When IoT devices are deployed within the confines of an enterprise network for use in internal network applications such as factory automation, surveillance, etc., use of private IPv4 space could provide sufficient address capacity depending on the quantities of things and existing allocations of private space. When public IP addresses are required by things, to literally connect to the Internet, IPv6 addressing may become necessary if not the default, given the general lack of available public IPv4 address space.

Beyond address capacity, certain applications may require ad hoc networking capabilities where things may require address autoconfiguration to “self-initialize” on the IP network or Internet based on local access connectivity. If Dynamic Host Configuration Protocol (DHCP) servers are not provisioned, the stateless address autoconfiguration (SLAAC) feature of IPv6 enables things to detect local network addressing and to auto-assign their IPv6 addresses.

The IPv6 SLAAC feature provides automation with agility for ad hoc Internet access, though it raises potential network access control concerns from a network manager’s perspective. In such cases, provision for security, access control and IP address management (IPAM) solutions becomes critical. IPAM solutions that can detect IPv6 addresses provide visibility into ad hoc IoT devices for network managers, while corresponding security solutions enable qualification and access control for connected things. I’ll discuss these topics in more detail in a future post.

Comments

  1. Tim, The answer may not be the same in all markets, in the industrial arena it may be that IOT could drive IPv6 adoption. In the consumer and citizen space the limiting issue may be that adoption of peer to peer communication for IPv6 runs against prevelent business models that depend on a centralised hub and spoke model funded by monitisation of data. Moving to a peer to peer model could be problematic as peer to peer does not have the subsidisation of client hardware as part of the overall service. While we have a hub and spoke model there is less of a drive for users away from IPv4. I have seen startups that are looking at tunnelling of IPv6 in IPv4 to provide a bridge betwen the two models, but that still requires some form of "hub" at a network level if not an application level.

    ReplyDelete
  2. Thanks Richard for your insights on this. I agree that consumer applications would likely be a weaker driver for IPv6 than enterprise applications depending on IoT application requirements of agility, setting up ad hoc networks, and scale. Many enterprise applications could remain on IPv4 certainly for IoT apps that don’t require IPv6-unique features nor require public Internet access for large scopes of devices. But it may be advisable to go IPv6 given the general IPv6 adoption trends on the Internet as well as future requirements of IoT technologies.

    ReplyDelete

Post a Comment

Popular posts from this blog

Handy AAAA filter in BIND 9.8

BIND 9.8.0 Adds DNS64 Support - Part 2 - How is it configured?

Inglorious DDI